The technical specification of these turbo air ventilators includes:

Working Principal

It utilizes wind energy to include air flow by centrifugal action. The Centrifugal force generated by the rotating vanes creates low pressure zone, which draws fresh air from outside even after the stoppage of wind.

Requirement of Air Ventilators

- 1. No. of Ventillators Reuired = Ventilation Rate Q/Exhaust Capacity
- 2. Required Ventilation Rate Q (cfm) = Volume x Air Change Rate/60
- 3. Volume of Spare to be Ventilated (ft^3) = 1 x w x h
- 4. Select Exhaust Capacity from Table B as per your required temp. Diff °C and Wind Velocity (MPH)

		TABLE B : Performan				ata						
Type of Building	Air Changes Rate/Hr.	Wind Velocity (mph)		5		8		10				
		Temp I	Diff ^o C	3	5	10	3	5	10	3	5	10
Ware House	4-6	Model	Stack	Exhaust Capacity in CFM								
Textile Mill / Auditorium	4-12	No. (Heigh t Ft)										
Factories (Light) / Hall	6-12	HLT-	10 20 30 40	939 1005 1058 1107	1	1102	1436	1498	1600	1792	1854	1958 2070
Paper Mill / Brewery / Oil Mill / Packaging Room	8-30				1154	1216	1556	1652	1812	1915	2010	2168 2252
Engine room / Laundry Plastic Factory	10-30				1216	1398	1605	1714	1896	1961	2070	
Heavy Factory / Transformer room												
Paint Shop / boiler Room	15-60											

- Effective Ventilation
- Air Ventilator

- Low Maintenance
- Hygienic Conditions.
- Highly Cnducive
- Convenient to Install
- Effective Ventilation
- Remove Smoke Heat, Gas and Humidit
- low maintenance,
- Proper preservation of electricity
- Maintaining hygienic conditions.
- low maintenance
- Proper preservation of electricity
- Maintaining hygienic conditions
- High end usage in different sectors such as homes, factories, offices, power houses, schools, community, etc.

How many Air vent is required to my site?

Calculating the Number of Turbines Required at a Site.

Measurement of the site: - First note down the Length, Breadth & Height of the Site in Feet.

Then Calculate the Total Volume.

$$V1 = L X W X h1$$

$$V2 = L X W X (h2-h1)$$

$$V = V1 + V2$$

<u>Total Volume X Air Change</u> = Total No Of Units. CFM X 60

Air Change = No of Times the Inside air of the building to be Changed by Fresh Air.

Exhaust Capacity of our Air iervents at above mentioned environment conditions.